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Abstract. We calculate the Josephson current across a plane interface separating dirty super-
conductors up to second order in the transparency of the junction. The leading contribution to the
second-order correction is caused by the suppression of the superconducting order parameter near
the interface. The ratio of the correction to the Josephson current in the first order is aboutDξ(T )/l,
whereD is the transparency of the junction,ξ(T ) is the temperature-dependent coherence length,
andl is the mean free path. This correction gives rise to the second harmonic in the current–phase
relationship.

1. Introduction

The charge transport in mesoscopic superconducting–normal-metal hybrid structures has
become a field of intensive theoretical and experimental research (for a recent review see
reference [1]). A useful theoretical tool for studying equilibrium and nonequilibrium properties
of these structures is provided by the quasiclassical equations of superconductivity (see
e.g. reference [1, 2]). The realistic mesoscopic structures often turn out to be in a dirty limit,
when the mean free pathl is much shorter than the zero-temperature coherence lengthξ0 in
a superconductor. Quasiclassical equations in this case simplify to the Usadel limit, which is
characterized by keeping only the first two terms in the expansion of the angular dependence
of the quasiclassical propagators in Legendre polynomialsPn(µ).

The quasiclassical equations of superconductivity must be supplemented by the boundary
conditions, which were derived by Zaitsev [3] in a general form valid in both the clean and dirty
limits. Kuprianov and Lukichev [4] considered the problem of writing Zaitsev’s boundary
condition in terms of the Usadel form of the quasiclassical propagator. However, as was
demonstrated in reference [5] the boundary condition of Kuprianov and Lukichev is valid only
to the lowest order in the expansion in the small parameterD (transparency of the barrier).
In the general case there appear higher terms in an expansion over Legendre polynomials
Pn(µ). All higher terms (n > 2) decay exponentially with the distance from the interface
(the characteristic scale isl). Nevertheless, they essentially influence the boundary condition.
Lambertet al considered the problem up to the orderD2. When they treated the problem of
the Josephson current, they obtained the second harmonic of the current–phase relationship
in this order. But Lambertet al did not consider the change of the superconducting order
parameter near the junction, which (as we shall show) takes place in the first order inD. When
this suppression is taken into account, the magnitude of the second harmonic is increased by
ξ(T )/ l (with ξ(T ) standing for the temperature-dependent coherence length).

Our paper is organized as follows. In section 2 we briefly review the Eilenberger equ-
ations and Zaitsev’s boundary conditions. In section 3 we suggest a convenient real-vector
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form of the Eilenberger equations. Then in section 4 we find the perturbational expressions
for the quasiclassical Green’s function in the first order in transparency. First we employ an
approximation allowing us to describe the behaviour of the superconducting order parameter
on the scale of the orderl near the junction. This provides a boundary condition at the interface
for the variation of the order parameter on a generic scaleξ(T ). For the description of the
latter one can use the Usadel equation. So we are in a position to estimate the superconducting
order parameter near the interface and to write down the result for the Josephson current in the
second order in transparency.

In this paper we discuss the stationary Josephson effect. The pairing is assumed to
be singlet and isotropic (the elastic scattering by nonmagnetic impurities is detrimental to
anisotropic superconductivity and only the s-wave type of pairing can exist in the dirty limit).
For simplicity we are considering the contact of identical superconductors.

2. The Eilenberger equations and Zaitsev’s boundary conditions

The main building block in the quasiclassical theory of equilibrium superconductivity is a
propagator which has a 2× 2 matrix structure:

ĝ(p,R, ωm) =
(

g(p,R, ωm) if (p,R, ωm)
−if +(p,R, ωm) −g(p,R, ωm)

)
. (1)

Herep denotes position on the Fermi surface,R stands for position in space, andωm =
(2m + 1)πT is the Matsubara frequency. The quasiclassical propagator has a normalization
propertyĝ2 = 1, resulting in the additional relationshipg2 + ff + = 1. Anomalous(f, f +)

and normal(g) Green’s functions have important symmetry relationships:

f +∗(p,R, ωm) = f (−p,R, ωm) = f (p,R,−ωm)
g∗(p,R, ωm) = g(−p,R, ωm) = −g(p,R,−ωm).

(2)

The Eilenberger equations can be written in a concise matrix form as

ivF · ∇ĝ + ω̂ĝ − ĝω̂ = 0 (3)

where

ω̂ =
(

iωm +
e

c
vF ·A

)
σ̂z − 1̂ +

i

2τ
〈ĝ〉 + i

2τs
〈σ̂zĝσ̂z〉

where: vF (p) is the Fermi velocity;A stands for the vector potential;τ and τs are the
times for elastic scattering on nonmagnetic and paramagnetic impurities, respectively. The
angular brackets denote averaging over the Fermi surface. The matrix1̂(R) incorporates the
superconducting order parameter1(R); σ̂z is the Pauli matrix:

1̂ =
(

0 1

−1∗ 0

)
σ̂z =

(
1 0
0 −1

)
. (4)

The superconducting order parameter (otherwise called the pairing potential) and the current
densityj(R) are given by

1(R) = πT λ
∑
m

〈f (p,R, ωm)〉

j(R) = −2π ieT N(0)
∑
m

〈vF (p)g(p,R, ωm)〉.
(5)

N(0) is the density of states at the Fermi energy per spin direction andλ is the superconducting
coupling constant. We shall denote the phase of complex1(R) asχ(R). We shall set the
vector potential to be zero. The latter circumstance does not rule out the possibility of studying
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current-carrying states (the Josephson current) in our formalism, since the superfluid velocity
can be created by the gradient of the phase.

Zaitsev’s boundary conditions [3] in the matrix notation can be written as

ĝa+ = ĝa− = ĝa
ĝa
[
(1−D(p))(ĝs+ + ĝs−)2 + (ĝs+ − ĝs−)2

] = D(p)[ĝs+ĝs− − ĝs−ĝs+]. (6)

Here

ĝs,a(p,R, ωm) = [ĝ(p,R, ωm)± ĝ(pr ,R, ωm)]/2
(by pr we denote the reflected momentum). The subscripts± in equation (6) stand for the
expressions that are taken on the right-hand (left-hand) side of the interface, respectively.
Finally, D(p) is the transparency coefficient of the boundary for the electron at the Fermi
surface with the given direction of momentum. The first of these relationships results in the
current conservation at the boundary. WhenD(p) is equal to unity, the boundary conditions
give rise to continuouŝg.

3. The real-vector parametrization of Eilenberger equations

The transparency coefficient for the case under discussion depends on the angle between the
Fermi velocity and the normal to the boundary. In the model of theδ-like boundary potential
it is given by

D(p) = p2
x

U2
0 + p2

x

(7)

with parameterU0 accounting for the strength of the potential. The interface is assumed to
be perpendicular to thex-axis (the junction is supposed to be located atx = 0). Hence the
quasiclassical propagator depends onpx , x, andωm. Let us introduce the functions

gs,a(px, x, ωm) = [g(px, x, ωm)± g(−px, x, ωm)]/2
and similarly defined functionsfs,a, f +

s,a. Due to the symmetry relationships (2) these can be
parametrized as

gs = bs1 fs = bs2 − ibs3 f +
s = bs2 + ibs3

ga = iba1 fa = ba3 + iba2 f +
a = −ba3 + iba2.

(8)

The parametersbs, ba are real and are combined into two three-dimensional vectorsbs =
(bs1, bs2, bs3) and similarly forba. By forming sums and differences of the Eilenberger
equations for̂g(±px, x, ωm), one can arrive at equations forbs,a:

dbs
dx
=M × ba dba

dx
= −M × bs . (9)

On the right-hand side of these equations we have the vector product of three-dimensional
vectors. The argumentspx, x, andωm of bs,a were omitted for brevity. The equations in (9)
should be considered only forpx > 0 andωm > 0 (this is the elimination of the redundancy
mentioned above). The three-dimensional vectorM in (9) is real. Its components are given by

M1 = 2ω̃/vx M2 = (1̃ + 1̃∗)/vx M3 = i(1̃− 1̃∗)/vx
ω̃(x, ωm) = ωm +

(
1

2τ
+

1

2τs

)
〈g(px, x, ωm)〉 (10)

1̃(x, ωm) = 1(x) +

(
1

2τ
− 1

2τs

)
〈f (px, x, ωm)〉.
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vx stands for thex-component of Fermi velocityvF (p). The components ofM (and the
pairing potential) can also be expressed viabs :

vxM1 = 2ωm +

(
1

τ
+

1

τs

)
〈bs1〉

vxM2,3 = 4πT λ
∑
ωm>0

〈bs2,3〉 +
(

1

τ
− 1

τs

)
〈bs2,3〉.

(11)

The electric current is related toba1 by

j = 4πeTN(0)
∑
ωm>0

〈vxba1(px, x, ωm)〉. (12)

The angular averaging in equations (11), (12) is carried out forpx > 0. Zaitsev’s boundary
conditions result in

ba− = ba+ = ba[
(bs+ − bs−)2 + (1−D)(bs+ + bs−)2

]
ba = 2Dbs+ × bs−.

(13)

As a consequence of the normalization condition we obtain

g2
s + f +

s fs + g2
a + f +

a fa = 1

f +
s fa + f +

a fs + 2gags = 0
(14)

or equivalently

b2
s = 1 +b2

a bsba = 0. (15)

Multiplying the first of equations (9) bybs and subtracting the second equation multiplied by
ba we getb2

s − b2
a = constant. Multiplying the first of equations (9) byba and adding the

second equation multiplied bybs we getbsba = constant. So the normalization conditions
(15) are consistent with the equations forbs,a.

It is useful to note that if we multiply the equation for dba1/dx by vx and integrate the
resulting expression over the Fermi surface and sum over Matsubara frequencies, we obtain
the current conservation djx/dx = 0. It is necessary in this derivation to use expression (5)
for the pairing potential.

4. The Josephson current correction

In this section we shall find the vectorsbs , ba up to the first order in transparency. It is
convenient to represent

bs = b(3)s + δbs

b(3)s =
1√

ω2
m + |1(x)|2

 ωm

|1(x)| cosχ(x)

−|1(x)| sinχ(x)

 . (16)

Note that the vectorb(3)s incorporates corrections in the transparencyD because of theD-
dependence of|1(x)| andχ(x). This vector gives the solution of the Eilenberger equations
for the bulk, when the pairing potential is constant and magnetic impurities are absent (for
the case of the s-wave pairing considered in this paper this is true irrespective of the value of
1/τ , but the situation changes when the pairing is anisotropic). The square of the vectorb(3)s
is unity, and from the normalization conditions (15) we see that in the first order inD

b(3)s δbs = 0 b(3)s ba = 0 (17)
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so we can write
δbs = Cs1e1 +Cs2e2 ba = Ca1e1 +Ca2e2

e1 =
( 0

sinχ(x)
cosχ(x)

)

e2 = 1√
ω2
m + |1(x)|2

( |1(x)|
−ωm cosχ(x)
ωm sinχ(x)

)
.

(18)

We shall write down the superconducting phase asχ(x) = (χ0/2) + δχ(x) for x > 0 and as
χ(x) = −(χ0/2)− δχ(x) for x < 0. The functionδχ(0) = 0, so there is a phase jumpχ0 at
the junction.

An essential approximation, which is justified in the dirty limit, is to takeMi = 〈bsi〉/τvx
(the influence of paramagnetic impurities will be neglected). It turns out that there is a variation
of the Green’s functions (linear inD) on the scalel near the junction, so this approximation
is valid within distances of the order ofl near the junction. The omitted terms are small in the
measure ofl/ξ0. Writing down equation (9), we obtain two independent systems

dCs2
dx
− ωm

ω2
m +12

b

d|1(x)|
dx

= 1

τvx
Ca1

dCa1

dx
= 1

τvx

(
Cs2 − 〈Cs2〉

) (19)

and
dCs1
dx
− 1b√

ω2
m +12

b

d δχ(x)

dx
= − 1

τvx
Ca2

dCa2

dx
= − 1

τvx

(
Cs1− 〈Cs1〉

)
.

(20)

Here1b(T ) stands for the modulus of the pairing potential in the bulk of the superconductor.
We are neglecting corrections to the bulk value1b(T ) due to the current flow, because they
have the orderD2. The functionsCs1,2, Ca1,2 depend onx, ωm, andµ = cosθ (whereθ is the
angle between the direction of the momentum and thex-axis).Cs2, Ca2 are even functions of
x; Cs1, Ca1 are odd functions ofx. So we shall consider for definiteness the regionx > 0.
The boundary conditions to these systems atx = 0+ result from equation (13):

Ca1 = −D(µ)1bωm

ω2
m +12

b

sin2 χ0

2
Ca2 = D(µ)1b sinχ0

2
√
ω2
m +12

b

. (21)

From equations (19), (20), and boundary conditions (21), we see that theωm-dependence
factorizes according to

Ca1(s2) = 1bωm

ω2
m +12

b

Fa(s)(x, µ)

Ca2(s1) = 1b√
ω2
m +12

b

Ga(s)(x, µ).
(22)

Substituting this factorization into the self-consistency condition for the pairing potential (5),
we get

δ1(x)
∑
ωm>0

12
b

(ω2
m +12

b)
3/2
= −〈Fs〉

∑
ωm>0

1bω
2
m

(ω2
m +12

b)
3/2

〈Gs〉 = 0.

(23)
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The angular averaging means

〈Fs〉(x) =
∫ 1

0
dµ Fs(x, µ)

and similarly for 〈Gs〉(x). One should not forget that there is a cut-off frequency in the
summation over the Matsubara frequencies and

1= 2πT λ
∑
ωm>0

1√
ω2
m +12

b

. (24)

Using the expressions (23) we can findFs(x, µ),Gs(x, µ) from equations (19), (20), and
boundary conditions (21). Substituting them back into (23), we get the equations∫ ∞

0
du
|1|′(u)
1b

(1 +κ(T ))
∫ 1

0
dµ [sgn(x − u)e−|x−u|/lµ − e−(x+u)/lµ]

+ 2 sin2 χ0

2

∫ 1

0
dµ D(µ)e−x/lµ = 0 (25)

and∫ ∞
0

du δχ ′(u)
∫ 1

0
dµ [sgn(x − u)e−|x−u|/lµ − e−(x+u)/lµ]

+ sinχ0

∫ 1

0
dµ D(µ)e−x/lµ = 0. (26)

The temperature-dependentκ(T ) in equation (25) is given by

κ(T ) =
(
12
b

∑
ωm

(ω2
m +12

b)
−3/2

)/(∑
ωm

ω2
m(ω

2
m +12

b)
−3/2

)
. (27)

This has the smallness ofλ (the superconducting coupling constant) and can be omitted from
equation (25). If we integrate equation (26) overx from 0 tox0 we arrive at∫ ∞

0
du δχ ′(u)

∫ 1

0
µ dµ [e−|x0−u|/lµ − e−(x0+u)/lµ] + sinχ0

∫ 1

0
dµ µD(µ)e−x0/lµ

= sinχ0

∫ 1

0
dµ µD(µ). (28)

From this equation we get that for largex

2l δχ ′(∞)/3= sinχ0

∫ 1

0
dµ µD(µ). (29)

Equation (29) means that in the first order in transparency the Josephson current

j = π

2
evFN(0) sinχ01b tanh

1b

2T

∫ 1

0
dµ µD(µ) (30)

is equal to the bulk supercurrent

jS = π

3
eN(0)vF l δχ

′(∞)1b tanh
1b

2T
. (31)

So equation (28) describes conversion of the Josephson current into the bulk supercurrent in
the first order in transparency.

Equation (25) analogously results in the relationship for largex � l:

|1|′
1b

= 3

l
sin2 χ0

2

∫ 1

0
dµ µD(µ). (32)
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The results thus obtained are valid within distances of the order ofl from the junction because
of the approximation employed,Mi = 〈bsi〉/τvx . We can use the Usadel equation for the
description of the behaviour of the superconducting order parameter at distancesx � l from
the junction. This equation provides the characteristic scaleξ(T ) of the change of1. Hence
equation (32) can be regarded as the boundary condition to the equation for|1|(x) on this
larger scale. We recall that the Usadel equation can be written as

ωmf − vF l
6

(
g∇2f − f ∇2g

) = 1g (33)

where functionsf, g depend only onR, ωm and imply Green’s functions averaged over the
Fermi surface. Using equation (33) and the asymptotic solutions of equations (19), (20) we
arrive at a linear equation for smallδ|1|(x) = |1(x)| −1b:∑
ωm>0

ω2
m

(ω2
m +12

b)
3/2

[
ξm

2

∫ ∞
0

du δ|1|′′(u)e−|x−u|/ξm

− ξm
2

∫ ∞
0

du δ|1|′′(u)e−(x+u)/ξm + κ(T ) δ|1|(0)e−x/ξm
]

= δ|1|(x)
∑
ωm>0

12
b

(ω2
m +12

b)
3/2
. (34)

Here, the following notation was introduced:

ξm =
√
vF l/6

(ω2
m +12

b)
1/4
. (35)

The solution of equation (34) can be approximated by

δ|1| = −Ke−x/b(T )

b(T ) ∼ ξ(T ) =
√
vF l

10

(
1− T

Tc

)−1/2 (36)

whereK stands for a constant and10 is the modulus of the bulk pairing potential atT = 0.
The approximation for the|1|(x) variation becomes exact for temperatures close to the critical
temperatureTc. If we integrate equation (34) overx from 0 to∞we shall arrive at the equation
for b(T ): ∑

ωm>0

ω2
m

(ω2
m +12

b)
3/2

ξ2
m

b + ξm
= b

∑
ωm>0

12
b

(ω2
m +12

b)
3/2
. (37)

The functionb(T ) resulting from this equation is plotted in figure 1. NearTc we have an exact
relationship:

b(T ) = π

4
√

3γ
ξ(T ) (38)

whereγ = 1.78 is Euler’s constant. Using the boundary condition (32), we find the value of
K in equation (36) and arrive at

δ|1| = −3b(T )

l
1b sin2 χ0

2
e−x/b(T )

∫ 1

0
dµ µD(µ). (39)

The pairing potential suppression near the junction for temperatures close to the critical one
was noted in reference [6] (see equation (33.9) there).
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Figure 1. Theb(T )/ξ(T ) ratio resulting from equation (37).

Because of the large ratiob(T )/ l, the main contribution toba in the second order in
transparency comes from the terms in equation (13) which involve the change of the modulus
of the superconducting order parameter. Thus we obtain the Josephson current up to the second
order inD:

j = π

2
evFN(0) sinχ01b

∫ 1

0
dµ µD(µ)

×
[
tanh

1b

2T
− 3b

l
sin2 χ0

2

(
tanh

1b

2T
+
1b

2T
cosh−2 1b

2T

)∫ 1

0
dµ µD(µ)

]
.

(40)

Since 2 sin2(χ0/2) = 1−cosχ0, the expression for the Josephson current involves a harmonic
sin 2χ0 term. It is worth noting that current–phase relationship measurements at a junction with
controllable transparency are within the capabilities of modern experimental techniques [7].

5. Discussion

In this paper we derived an expression for the Josephson current (40) up to the second order in
transparency of the junction. The effect of the pairing potential suppression near the interface
turned out to be essential for the second-order correction. An approximation for theM -term
in (9) allowed us to find the spatial behaviour of the quasiclassical Green’s function within
distances of the order ofl from the junction. Thus we obtained the boundary condition (32) for
the spatial behaviour of the pairing potential on a larger scaleξ(T ). One can use the Usadel
equation for the description of the behaviour of the pairing potential on this scale, which leads
to equation (34). The result (40) is valid as long asDξ(T )/l � 1 (the approximation (36) is
not valid otherwise). Note the difference between the plane-junction situation discussed in this
paper and the case of the point contact (see e.g. reference [3]). In the latter case the modulus
of the pairing potential in the Eilenberger equations can be taken as constant. Contrary to
the case for the point contact, the correction (40) results in the current having its maximum
value for the phase jumpχ0 smaller thanπ/2; see the schematic plot in figure 2. Besides, this
correction is more pronounced for the temperatures close to the critical one. These features
were observed in the experiment of Koopset al [7].
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Figure 2. The schematic plot of the current–phase relationship in the case of low transparency for
plane contact (solid line) and point contact (dashed line).

The second harmonic in the current–phase relationship was also obtained in [5]. It was
shown to result from those terms in the effective boundary condition (61) which were quartic
in quasiclassical propagators. The difference of our result, for the amplitude of the second
harmonic, from that of Lambertet al is caused by the variation of the superconducting order
parameter near the interface on the scaleξ(T ) which is much larger thanl. Thus one cannot
substitute the bulk values of the quasiclassical propagators into the effective boundary condition
as was done in reference [5] (see their expressions forG,F following equation (70)).
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